
Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, Ralf Steinmetz. User Plane Hardware Acceleration in Access Networks: Experiences
in Offloading Network Functions in Real 5G Deployments.

To appear in the Proceedings of the 55th Hawaii International Conference on System Sciences, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of
the copyright holder.

User Plane Hardware Acceleration in Access Networks: Experiences in
Offloading Network Functions in Real 5G Deployments

Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, Ralf Steinmetz
Techincal University of Darmstadt
{firstname.lastname}@tu-darmstadt.de

Abstract

Fulfilling the ambitious Quality of Service demands
of today’s wireless networks, especially low latency,
high bandwidths and availability, is a big challenge for
researchers, network architects, and operators. Each
networking component on the data path between the
user equipment and the destination data network, e.g.,
the Internet, must provide the highest performance to
meet these requirements. This work demonstrates how
different network elements of the user plane, describing
the whole path of user traffic, can be sped up with
different hardware acceleration technologies. For that,
we demonstrate how to build up a 5G standalone
campus network for evaluation, working end-to-end
with real user equipment and open-source software
components. Further, we analyze the user plane network
functions of 5G networks from the radio access network
to the core. Based on our real 5G setup, the practical
evaluation of the analysis results shows up how the 5G
user plane hardware can be accelerated best.

1. Introduction & Background

One main objective of 5G access networks is an
increased Quality of Service (QoS), especially high
throughput and low latency. All involved network
functions and the underlying hardware must perform at
the highest possible level to accomplish this.

One enabler for innovation in mobile access
networks and computer networks, in general, is
Software Defined Networking (SDN). SDN describes a
paradigm for disaggregating network functionality [1].
Network switches are divided into a user plane (also
known as data plane) and a control plane. The user plane
is responsible for forwarding network packets based on
simple rules only, while the control plane is responsible
for computing and managing these rules. By introducing
well-defined interfaces between control and user plane,
the replacement of only a single user plane function or
control function is eased.

Achieving the postulated QoS requirements in 5G
networks (e.g., one millisecond round trip time from
devices to the core) requires focusing on the user
plane for acceleration. In most of today’s mobile
networks, including modern 4G and 5G deployments, all
network functions are realized in software environments
fulfilling the performance goals neither in terms of
throughput nor latency. However, this performance
can be increased by offloading some functionality on
programmable hardware accelerators. Besides the
increase in performance, hardware acceleration raises
new challenges and not every approach is suitable for
every network function to be accelerated.

5G networks can operate either in non-standalone
mode with a 4G-based anchor cell for authentication
or as a pure 5G-based network, named 5G standalone.
We focus on 5G standalone networks in the following.
Figure 1 shows the 5G standalone architecture according
to the 3GPP specification [2]. The functionality can
be divided according to the previously introduced SDN
terminology into a user plane and a control plane.
The User Equipment (UE) connects with the Data
Network (DN) (typically the Internet) through the 5G
network.

For that, the UE connects via the Radio Access
Network (RAN) with the 5G-core at the specified
reference points N1, N2 for the control plane and N3
for the user plane. The RAN functionality can be further
divided into sub-functions, often named as “split”. In the
terminology of the Open RAN Alliance (O-RAN) and
the “7.2-split”, this is the Radio Unit (RU), Distributed
Unit (DU) and Central Unit (CU). In other split
scenarios, the DU and CU are combined to a CU/DU or
BaseBand Unit (BBU) in the 4G terminology. However,
the overall functionality remains unchanged.

As part of the 5G-core, the User Plane
Function (UPF) terminates the Protocol Data
Unit (PDU) session of many UEs and forwards
the packets to and from the data network. On the
N6 side of the UPF, standard IPv4/6 protocols are
used; on the N3 side, for each PDU session a GPRS

Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, Ralf Steinmetz. User Plane Hardware Acceleration in Access Networks: Experiences
in Offloading Network Functions in Real 5G Deployments.

To appear in the Proceedings of the 55th Hawaii International Conference on System Sciences, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of
the copyright holder.

UE DNUPFCUDURU
BBU

RAN

N3 N6

AMF SMF
N1/N2 N4

... ...

control plane
user plane

Service-Based
Architecture (SBA)

Figure 1. User plane centric topology of the 5G-core

network and RAN.

Tunneling Protocol (GTP) tunnel is established. One
UE can be connected to multiple DNs in parallel
and two GTP-tunnels, one for upstream and one for
downstream, are established for each DN.

The two network functions, RAN and UPF, represent
all involved components in the user plane.

In general, the usage of 5G standalone networks
can be divided into two phases: (1) Registration: The
UE authenticates itself towards the 5G core with a
challenge-and-response mechanism [3] and flow rules
are installed in the RAN and UPF of the user plane. This
happens typically only once for each UE and therefore
does not affect the end-to-end performance strongly. (2)
Connection: The UE is successfully connected and can
send/receive IP packets to/from the data network. Only
the user plane is involved in this phase.

The UE connects via the N1 reference point to
the Authentication Management Function (AMF) for
authentication. These N1 messages are received on the
air interface by the RAN and forwarded to the AMF. In
addition, messages between the RAN and the AMF are
exchanged during the authentication and PDU session
establishment procedure via the N2 reference point.

Once the UE is successfully authenticated, it can
request a PDU session from the 5G-core, configured in
the UE, RAN and UPF by the AMF and the Session
Management Function (SMF). Within the 5G-core,
all control plane network functions, including the
AMF, SMF and many more, are orchestrated in a
Service-Based Architecture (SBA). This means, all
network functions communicate via a HTTP/2 REST
interface and can be deployed as a cloud service.
Through this deployment, network functions can be
instantiated multiple times in parallel, e.g., having
multiple SMF and UPF functions in order to distribute
the load. By that, high scalability of 5G deployments for
high network loads can be achieved.

To improve the overall 5G network performance,
several different hardware acceleration approaches can
be applied within the RAN and UPF network function
to achieve the desired performance. In order to ensure
correct behavior as well, researchers and engineers need
to validate new approaches in a real working end-to-end
system. Therefore, we first describe the difficulties in
setting up a modular end-to-end 5G standalone testbed,

allowing the easy exchange of network functions, and
discuss several hardware acceleration approaches.

The outline of the following paper is as follows:
First, we present our experiences in deploying an
end-to-end 5G network for research purposes. Second,
we discuss several hardware acceleration approaches
and technologies for 5G network functions in the user
plane. Last, we present measurement results as well as
our experiences in deploying these approaches within
our test network.

2. A 5G standalone Testbed Setup

As validations performed in simulations commonly
have limited expressiveness, it is crucial also to test
novel approaches for accelerating 5G networks in
testbeds. There are two main approaches to perform
these test: (i) in an isolated environment with test
benches and stimulus generators for the particular
network function under test or (ii) integrated into
a working end-to-end setup, i.e., a 5G capable UE
connected via a RAN and a 5G-core with a data network
to perform end-to-end testing. In general, testing in an
end-to-end setup is far more expressive than tests based
on test benches, as the 5G ecosystem is very complex
and test benches rarely cover all cases. Additionally,
a functional end-to-end test guarantees that no major
functionality is missing or behaving faulty.

In this section, we will introduce a disaggregated 5G
standalone testbed for research and development. We
describe the deployment of this testbed and important
design decisions to be considered. This testbed is
easily extensible, as we rely on open-source components
wherever possible.

2.1. Overall Architecture

The overall testbed architecture is shown in Figure 2.
It relies mainly on the free5gc open-source project to
realize 5G-core network functions [4]. The free5gc
project is licensed under the Apache 2.0 license and
especially well suited due to its modularity: Each
network function is realized as its own process and
communicates with other network functions over the
well-defined reference points in the 5G service-based
architecture. This enables the replacement or
modification of individual network functions and eases
new features to be developed and tested. For example,
the UPF implementation can be replaced by a novel
prototype with advanced features just like any other
control plane function. Note that the authors of this work
are neither the founders nor the main contributors in this
project. Therefore we would like to acknowledge the
work of the contributors in free5gc explicitly.

Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, Ralf Steinmetz. User Plane Hardware Acceleration in Access Networks: Experiences
in Offloading Network Functions in Real 5G Deployments.

To appear in the Proceedings of the 55th Hawaii International Conference on System Sciences, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of
the copyright holder.

In our testbed architecture, depicted in Figure 2,
the 5G-core network functions are realized within two
off-the-shelf servers and one specialized component
realizing the RAN functionality as described later in
detail in Section 2.2. The two servers are running on
Ubuntu 18.04 (kernel 5.0.0-23), but we do not expect
any issues with other Linux distributions. The only
restriction is the kernel version, which is required by the
UPF implementation of free5gc.

The server #1 realizes all control plane functions
of the 5G-core as well as the first UPF instance for
“ims”-traffic and an IMS-server as described later in
Section 2.3. The server #2 realizes the UPF instance
for the data network “internet”. For each UPF instance,
a dedicated SMF network function instance is required,
both running on server #1.

Due to current limitations of free5gc, it is impossible
to run these two UPF instances on the same server within
the same Linux network namespace, and therefore the
second server is reasonable. However, we successfully
tested running both UPF instances on the same server
in two different namespaces as well. As one of our
goals is to replace the UPF network function, the
encapsulated dual server approach is more suitable for
us. Nevertheless, research projects having their focus
on the control plane, e.g., on 5G authentication methods,
two namespaces would be a proper solution.

PDU sessions to the data network “internet”,
terminated on the UPF of server #2, are used for all
normal traffic of nowadays UEs and multiple networks
are typically not in use. As the IP addresses assigned
to the UEs in this data network are not public available
(in the example they are in the range of 10.1.0.1 −
10.1.255.254), a Network Address Translation (NAT)
must be performed before forwarding the packets to the
Internet. This NAT functionality is implemented using
the basic Linux masquerade functionality.

All network functions within the 5G core must be
able to connect to each other. For that, unique IP
addresses must be assigned to each function. The
service-based architecture interfaces within server #1
can be assigned to the IP address range 127.0.0.x/24
as they are all located within the same machine. Only
the interfaces N1/N2 of the AMF, the N4 interface
of the “internet” SMF and the N3 interfaces of both
UPF functions must be assigned to IP addresses
in the management network (i.e., 192.168.1.2 and
192.168.1.3) as they need to be accessible by server #2.
Further, the N3 address of the AMF must be configured
within the RAN, which connects at startup to the AMF.
Within the 5G-core, no further IP addresses must be
configured, as the network repository function of the 5G
core, allows dynamic locating of any network function.

AMARI
Callbox

IMS-
server

RANUE
AMF

NAT

UPF
"ims"

10.0.0.0/16

Management
Switch

SMF
"ims"

SMF
"internet"

N4

server #1

1
9
2
.1

6
8
.1

.1

192.168.1.0/24

1
9
2
.1

6
8
.1

.3
1
9
2
.1

6
8
.1

.2

UPF
"internet"
10.1.0.0/16

Internet

5G-core

...
SBA

server #2

10.0.255.254

N1/
N2/
N3

assigned UE
IP-addresses:
• ims: 10.0.0.1
• internet: 10.1.0.1

N4

N3/
N4

N3

N1/N2

Figure 2. End-to-end 5G standalone testbed.

The last major step is to configure the 5G parameters
within the RAN and the core. A Public Land Mobile
Network (PLMN) identifier must be set within the RAN
configuration file, the AMF configuration file and in the
SIM card of the UE. The UE uses this PLMN to identify
the operator network it should register to. If the PLMN
of the RAN mismatch with the PLMN of the SIM card,
the registration process will not be initiated. Further,
a programmable SIM card must be programmed with
all 5G-AKA credentials as well as a unique SIM card
ID (IMSI), and these same credentials must be inserted
into the 5G core database.

2.2. Radio Access Network

In our work, we focused on the commercial product
AMARI Callbox Classic [5] which was the only
available 5G standalone RAN for research purposes at
the time of starting this work.

Nevertheless, open-source initiatives exist, which
realize this functionality with free programmable
Software Defined Radio (SDR) boards. In the recent
past, the openairinterface5g initiative [6] presented a
first working 5G standalone RAN based on SDR cards.
However, since we did not have the necessary SDR
hardware in our lab at the time of writing, we could not
yet investigate this.

As previously mentioned, the O-RAN project [7]
specified a disaggregated RAN consisting of a RU, DU
and CU. First vendors already presented hardware of
the RU containing only the high-frequency functionality.
The functionality of DU and CU can be realized
within software and we expect such RU hardware to
be supported in conjunction with open-source software
such as openairinterface5g in the future.

2.3. Voice over New Radio

In 5G standalone networks, the UE must use Voice
over New Radio (VoNR) to provide telephony service.
For that, the UE requests an additional PDU session
from the 5G core to the data network “IMS” (IP

Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, Ralf Steinmetz. User Plane Hardware Acceleration in Access Networks: Experiences
in Offloading Network Functions in Real 5G Deployments.

To appear in the Proceedings of the 55th Hawaii International Conference on System Sciences, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of
the copyright holder.

Multimedia Subsystem) and connects to an IMS-server
within this network. The IP address of the IMS-server
will be forwarded by the AMF to the UE during the PDU
session setup and must be within the IP-range of the
PDU subnet. In the example setup of Figure 2, the UE
IPv4 address for the IMS data network is 10.0.0.1/16
and the IMS-server has the IPv4 address 10.0.255.254,
which is in the same subnet. Suppose the UE requests
VoNR functionality but the 5G core provides no IMS
data network or no IMS-server exists. In that case, the
registration process terminates unsuccessfully for some
devices and prevents a successful test.

In order to circumvent this, the test network must
provide an IMS data network and an IMS-server must
respond to the UE initial request. The UE does not need
to registers successfully to the IMS-server, even an error
message is sufficient to complete the registration.

However, one of the tested UEs has a fallback
mechanism to accept connections to 5G standalone
networks without VoNR functionality after 1 to 3
minutes of unsuccessful IMS registration attempts.

In our work, we circumvent this issue by configuring
two data networks (“internet” and “ims”) in the 5G-core
and running an IMS-server. We achieved a working
setup for VoNR with multiple server implementations,
including the Amarisoft IMS, the open-source Kamailio
SIP [8] and a self-developed error message responder.

2.4. Available 5G Standalone UEs

Not all UEs capable of 5G support 5G standalone,
even if the datasheet claims this. Further, not every UE
works with 5G standalone on every radio frequency and
every Public Land Mobile Network (PLMN) identifier.
We hat best experience on 5G channel n78 with
the PLMN 00101, 999** and selected PLMNs of
operators which support already 5G standalone. The
configured channel bandwidth and MIMO factor also
influence the success of the registration process. We
observed that the only working configuration for all
tested 5G capable UEs was 2x2 MIMO with 50 MHz
bandwidth per MIMO-channel. At the time of this work,
we successfully tested the following devices with at
least one of the previously mentioned configurations:
Huawei P40, OnePlus 8T and Oppo Find X2 Pro.
The list of unsuccessfully tested devices will not be
presented, as not all parameter configurations were
tested and a software update might enable 5G standalone
functionality in the future. In addition, we observed
changes in the behavior after firmware updates of the
UEs, sometimes even to the worse. As sending on some
frequencies and PLMNs might not be allowed by local
regulations, a Faraday cage should be considered.

2.5. Reproducing the Setup

While building this 5G demonstration setup, we
experienced several minor bugs and missing features.
However, we proposed bug fixes as pull requests
for all of them and starting with free5gc v3.0.6 the
setup described in this section can be deployed with
only adapting the configuration files and the UE
database. Special hardware is only required for the RAN
functionality; all other components can be realized with
commodity servers and open-source software.

3. Hardware Acceleration Technologies

This section provides an overview of existing
approaches for hardware acceleration approaches for
the 5G user plane. The 5G standalone architecture
implements concepts and functionality of two
domains, traditional networks as well as of data
centers. Therefore, we will consider in the following
acceleration technologies from both domains. First,
in Section 3.1 the evaluation metrics are introduced.
Second, we discuss multiple acceleration technologies
for 5G user plane network functions in Section 3.2. The
discussion results are summarized in Table 1 on a scale
from good (++) to bad (- -).

3.1. Evaluation criteria

For the assessment of different approaches, we will
introduce review classes in the following which can
be grouped into three categories: (i) functionality,
(ii) flexibility and (iii) performance.

Functionality: Functionality is captured by three
properties: header processing, QoS-functions, and
cryptography. Header processing refers to the ability
of the user plane network functions to understand
and process special packet header protocols which
are not supported by non-programmable off-the-shelf
networking hardware [9], e.g., the GTP encapsulation
protocol of 5G. QoS-functions refer to prioritizing and
queuing packets to ensure that the UE is not exceeding
its bandwidth or in case of handing over a UE from
one RAN cell to another[10]. Cryptography refers to
the en-/de-cryption and en-/de-coding of packets within
the RAN, not only the packet headers. In the O-RAN
split shown in Figure 1, this encryption functionality
would be realized in the Central Unit (CU), while the
channel encoding would be realized in the Distributed
Unit (DU).

Flexibility: In this work, Flexibility describes
the adaptability of the acceleration technology to
changing requirements. Concretely, the scaling of an
approach, i.e., how easily new instances of a network

Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, Ralf Steinmetz. User Plane Hardware Acceleration in Access Networks: Experiences
in Offloading Network Functions in Real 5G Deployments.

To appear in the Proceedings of the 55th Hawaii International Conference on System Sciences, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of
the copyright holder.

Software Hardware
SR-IOV + SR-IOV +

kernel space user space kernel space user space NPU GPU FPGA P4 switch
functionality:

header processing - ++ - ++ ++ + + ++
QoS-functions + ++ + ++ - + ++ -

cryptography - + - + + ++ + - -
flexibility:

scaling + + ++ ++ - + - -
reconfiguration ++ ++ ++ ++ - + - +
#GTP sessions ++ ++ ++ ++ + ++ -/+ -
performance:

throughput - + - + + + + ++
latency - + - + + - ++ ++

jitter - + - + + - ++ ++
packet loss - + - + + - ++ ++

Table 1. Overview of software concepts and hardware technologies for accelerating 5G network functions.

function can be created or destroyed, analogous to the
cloud computing principles. Additionally, it is very
beneficial if new functionality introduced by 3GPP
can be easily added to existing network functions by
updating the software or reconfiguring the hardware.
For example, in the 5G standalone specification, QoS
flow identifiers were used as a GTP header extension.
This kind of flexibility is considered in the review class
reconfiguration. Last, the total amount of state which
can be stored within the device should be considered,
i.e., how many GTP sessions can be installed in the UPF
at the same time or how many UEs can be registered to
a RAN station.

Performance: As the last category, Quality of
Service (QoS) metrics to measure the performance
of approaches need to be considered. Throughput
describes the number of bytes processed and forwarded
by the network function in a certain time period. The
latency describes the time a packet is processed in
a particular function. Compared to that, the total
end-to-end latency of a system is the sum of the latency
of all network functions. As the total end-to-end latency
is the latency perceived by the UE, it is a crucial
metric in 5G. The variance in latency is described as
latency jitter. Especially for functionality like the RAN
network, which has strict QoS requirements, this is
very important. It influences the longest latency of an
individual packet and is a pivotal metric to assess the
expectable latency of a network function. Packet loss is
the last metric to be considered. A lost packet must be
retransmitted and therefore has a similar negative effect
than a high latency jitter. In computer networks with
real-time guarantees, e.g., time-sensitive networks for
real-time applications, typically no packet loss and only

low jitter is required, and a certain throughput can be
guaranteed.

3.2. Acceleration Approaches

Kernel space: Standard software applications get
access through the operating system kernel. The kernel
typically includes a full networking stack containing
all protocols. The advantage of this approach is that
the application does not have to take care on the
network and transport layer. However, the use of
special protocols in 5G requires to load additional kernel
modules and is therefore not ideally suited for header
processing. QoS-functionality can be realized within the
kernel; additional queueing disciplines can be defined
but is quite challenging compared to a pure user space
implementation. As all functionality is realized in
software, the flexibility in general is very high. The only
disadvantage is the scaling aspect, as one physical port
of the network interface card (NIC) is always mapped
to one kernel stack implementation and no parallelism
is given. As the kernel functionality is made to be
universal and a lot of functionality is implemented, the
performance is, compared to the other approaches, low
but acceptable.

One advantage of a kernel-based network function
is that no specialized hardware is needed. To
summarize, network functions can be deployed as
software components upon the kernel networking stack,
however, the main issue is a bad performance.

User space: The most prominent framework for user
space network functions is the Data Plane Development
Kit (DPDK).In contrast to kernel space functions, the
network interface card will be decoupled from the

Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, Ralf Steinmetz. User Plane Hardware Acceleration in Access Networks: Experiences
in Offloading Network Functions in Real 5G Deployments.

To appear in the Proceedings of the 55th Hawaii International Conference on System Sciences, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of
the copyright holder.

operating system driver and is directly attached to the
application. By that, receiving data will be stored
directly within the application’s memory space and, as
a consequence, will never be copied around. User space
drivers usually have a significantly higher performance
in terms of throughput and latency as the kernel is not
involved [11]. Further, the latency jitter is lower as at
least one dedicated CPU core is exclusively reserved
and no interrupts or thread changes can occur. The
expressiveness of an application in the user space is
comparable to the kernel space. However, as the raw
packet is hand over to the application, header processing
can be performed much better as all header fields are
available. Further, advanced QoS schedulers can be
implemented as no restrictions of the kernel complicate
the process. Same, cryptography functionality can be
performed with the assistance of existing user space
libraries.

For user space drivers, hardware support by the
network interface card is required, which is, however,
given by most nowadays network adapters. Therefore,
this approach can be seen as hardware-assisted
acceleration even though the network function is still
running in software and it is no network function
offloading to hardware. In summary, user space drivers
are more suitable in all categories than kernel space
drivers and should be used if a software-based network
function implementation is intended.

SR-IOV: Single Root I/O Virtualization (SR-IOV)is
a technology that allows to split up one physical
resource,i.e., the physical network interface card port
or, more concrete, the corresponding PCIe device, into
multiple virtual devices. SR-IOV requires hardware
support by the network interface card and by the CPU.
Towards the software, multiple interface ports occur,
which can be configured with different IP addresses, and
on each a network function can be bound to. By that,
the flexibility in terms of scaling increases, as multiple
instances, e.g., as docker container or virtual machines,
can be dynamically added and removed.

SR-IoV technology can be applied for kernel and
user space network functions in a very similar way.
As this approach causes no overhead in software and
the hardware implementation should cause no or only
little overhead within the network interface card, this
approach should not strongly affect the performance.
Measurements in related work have shown only a
marginally negative impact on the performance by
SR-IOV [12]. Kourtis et al. presented similar results and
came to the conclusion that SR-IOV in combination with
a user space driver results in a very good performance
and flexibility for virtualized network functions [13].

NPU: Network Processing Units (NPU) are a special

kind of processor architecture optimized for processing
packets at high rates. The available functionality of
the NPUs varies depending on the vendor, but header
processing is generally supported. Cryptographic units,
i.e., for encrypting the packets in the 5G RAN, are
also often available. However, they are typically made
for data center applications and therefore do not offer
a sufficient number of queues for shaping the traffic
of all connected UEs. In contrast to conventional
software network functions, the programmability is
more restricted. Nevertheless, flow rules are stored in
large DDR3/4 memories and only the most frequent
rules are cached within the NPU. This storage strategy
allows more session installations compared to a P4
switch. The performance is similar to user space
software implementations but uses considerable less
energy.

GPU: Graphics Processing Units (GPU) are massive
parallel computing accelerators initially build for
rendering computer graphics. In addition to their
initial task, they are also very well suited for many
other computing tasks, including network functions,
due to their highly parallel and universal processing
architecture. An advantage of the GPUs is their
high programmability, which is comparable to standard
software applications. Civerchia et al. [14] have shown
that this architecture is generally well suited for 5G
RAN functionality. However, they observed issues
regarding the latency of data transfers. This issue was
addressed by Kundel et. al. [15] by proposing a direct
data I/O from the network to the GPU. In general,
this kind of accelerator benefits from huge memory
capacities and fast memory controllers.

FPGA: Field Programmable Gate Arrays (FPGA)
can be configured to represent any boolean logic.
While the development process is very challenging and
configuration updates typically require a restart, they
are very powerful for offloading network functions.
Building 5G RAN functionality on top of FPGA
technology was discussed in literature many times
before. For example, Ricart-Sanchez et al. [16]
proposed a framework for 5G network slicing upon
FPGAs. They showed that FPGAs are well suited for
the required QoS functionality in the separated network
slices. Depending on the FPGA, different memory
technologies for storing flow rules exist. Nevertheless,
all currently available FPGAs provide very good
performance and deterministic behavior. However, the
throughput is reduced compared to P4 switches but still
equal or better than software-based approaches. FPGAs
can be used to realize either RAN or UPF functionality
in 5G networks.

P4 switch: The P4 programming language allows

Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, Ralf Steinmetz. User Plane Hardware Acceleration in Access Networks: Experiences
in Offloading Network Functions in Real 5G Deployments.

To appear in the Proceedings of the 55th Hawaii International Conference on System Sciences, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of
the copyright holder.

the easy reconfiguration of partially programmable
network switches [17]. By that, any networking
protocol can be parsed and processed by the switch.
Modifications of the payload, e.g., encryption, is not
possible. Therefore they are only well suited for
accelerating the 5G UPF. The memory for storing flow
rules is realized within the switching hardware. This
limits the number of parallel GTP sessions but can
provide a very high throughput of up to 12.8 Tbps .
For QoS functionality the limited number of queues is
strongly restricting the possible feature set. However,
basic QoS management can also be performed within
programmable switches [18].

Hybrid Solutions: Combinations of FPGAs and
P4 switches have been discussed in literature before.
The work “OpenBNG” [19] combined an FPGA and P4
switch to realize a Broadband Network Gateway with
FPGA-assisted QoS support. Katta et al. [20] proposed
the idea of combining a software network function and
a hardware switch to combine the benefits of both. This
approach might be promising for 5G network functions.

To summarize, hardware acceleration approaches,
in general, are an up-and-coming alternative to
pure software-based virtual network functions in 5G,
as they can satisfy hard latency and throughput
demands in the user plane. The UPF and NAT
functionality could be realized on any of the previously
mentioned technologies, while RAN functionality
requires reconfigurable hardware.

4. Experimental Results and Experiences
of HWA in 5G

In this section, we extend our theoretical analysis
by a prototypical implementation in our 5G testbed
and provide the measurement results as well as
our experiences in deploying these approaches. In
particular, we investigate different implementations of
the User Plane Function (UPF). For that, we focus on
four different approaches as Device under Test (DUT):
(1) a kernel based software implementation on servers
with dedicated NIC ports (KS), (2) a user space
software implementation on a server with dedicated NIC
ports (US), (3) a kernel space software implementation
with virtual SR-IOV NIC ports (KSv) and (4) Intel
Tofino based P4 implementation.

For the kernel space implementation (1 and 3),
we used the existing free5gc UPF implementation,
which operates upon the Linux kernel networking
stack. In case of the user space (2), we investigated
the dpdk gtp gateway [21], which is open-source
available on Github. As this implementation was not
5G standalone (3GPP release 15 or newer) compliant,

P4STA-Stamper
N3-trace
replay

5G UPF (DUT)

N4
N3

shaping up to 40/100 Gbps

N6

N4-trace
replay

100

x t1s

packet
validation

t2

Figure 3. Testbed for performance benchmarking

multiple UPF implementations.

we added a GTP protocol extension for QoS flow
identifiers. As no 5G standalone compliant P4
implementation of an UPF exists, we build our own
prototype implementation on an Intel Tofino switch (4).

4.1. Measurement methodology

The previously introduced end-to-end testbed setup
in Section 2 allows capturing all user and control plane
messages on all available interfaces. For benchmarking
the different UPF implementations in a reproducible
manner, these messages can be captured and replayed.
In this particular setup, we capture the control messages
of the N4 interface and the user plane traffic at the N3
and N6 interfaces. Based on the captured messages,
we generate synthetic replay bots behaving similarly to
the real end-to-end testbed. In addition to replaying
a captured trace, these bots can modify the packets
slightly, e.g., replacing timestamps by the current date
and time. Replaying of messages has three main
advantages: (i) The GTP session id can be assumed
to be static which simplifies the setup and server
coordination, (ii) the UE cannot enter the idle mode
causing unexpected N4 messages, and (iii) the generated
load is exactly the same in all experiments ensuring
reproducible results.

Our measurement setup is shown in Figure 3. As
we focus on the performance criteria of the DUT,
concrete throughput, latency, jitter and packet loss, a
measurement tool for these metrics is needed. For
that, we build upon the open-source framework P4STA,
allowing us to measure these performance criteria with
a very high accuracy [22].

In our measurement setup in Figure 3, the server
on the top replays the N4 traffic, which uses the PFCP
protocol to install the forwarding rules in the UPF.
After installing the forwarding rules, the server on
the left side sends a GTP encapsulated data stream
with the previously installed GTP tunnel ID. Before
entering the DUT, the packets are replicated, shaped and
timestamped by P4STA. By replicating each packet 100
times, a rate of up to 100 Gbps can be generated by
software-based load generators such as the Linux tool
tcpreplay. Timestamping each packet before and

Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, Ralf Steinmetz. User Plane Hardware Acceleration in Access Networks: Experiences
in Offloading Network Functions in Real 5G Deployments.

To appear in the Proceedings of the 55th Hawaii International Conference on System Sciences, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of
the copyright holder.

Figure 4. Kernel space (KS), User Space (US) and

P4 switch (P4) latency distribution at different

input rates.

after the DUT allows latency and jitter measurements,
as well as loss detection. By shaping the packet flow
to a specific rate, the load on the DUT can be varied.
The DUT will receive the GTP encapsulated data on
the N3 port and processes them. In particular, the UPF
parses all headers and removes the GTP encapsulation,
causing a packet size reduction of 44 byte. The replayed
N3-trace consists of 1000-Byte packets containing
IPv4/TCP payload, resulting in packets of 956-Byte on
the N6 side. Last, the packet validation server captures
the packets and they can be validated for correctness
after the experiment.

The server used for benchmarking the software UPF
implementation was equipped with a dual-core Intel
Xeon E5-2670v3, 256 GB DDR4 RAM and two Intel
XL710 network interface cards. The operating system
was Ubuntu 18.04 (kernel 5.0.0-23). The CPU clock
frequency was configured statically to the maximum
frequency, and therefore no clock throttling is allowed.
In the case of the user space UPF, the application was
pinned to a CPU socket directly attached to the network
interface card. In each run, between 1.2 million and
122.5 million test packets were sent into the DUT, and
consequently all presented results are significant.

4.2. Results

The measurement results in Figure 4 depict
the differences between the investigated UPF
implementations. Note that all results only depict
data rates that are lower than the maximum throughput
of the investigated DUT and therefore, (i) no packet loss
occurred and (ii) no large packet queue should be build
up within the DUT. The vertical spread of the boxplots
is an indicator of the latency jitter.

Figure 5. Performance characteristics of the kernel

space UPF implementation in dependence of the

input rate.

In the left part of the figure, measurement results
for the latency at 1 Gbps input rate are shown. The
kernel space implementation has the highest average
latency and also a very heavy jitter. The DPDK-based
user space implementation latency is around ten times
lower and the jitter is reduced. The P4 implementation
shows up an average latency of only ∼ 739 ns and
no measurable jitter. In total, we can conclude that
the P4 UPF shows up a latency around 100x times
lower than the kernel based implementation. Thus,
kernel-based implementations seem to be less suitable
for UPF implementations, as strict QoS requirements
can generally not be satisfied due to the high latency and
heavy jitter.

Increasing the input rate from 1 Gbps to 2.4 Gbps
shows similar results. The kernel and user space
implementation latency has increased in both scenarios,
even though no packet loss occurs. Slightly above
2.4 Gbps , the first packet loss occurs in the KS
implementation and the latency increases drastically.

While increasing the rate further to 22 Gbps , which
is close to the maximum throughput of the user
space UPF, its average latency remains rather constant.
However, it is noteworthy that the distribution is much
tighter than the measurement at 2.5 Gbps . We could
reproduce this behavior but did not find out the reason
behind this. We assume that this might be caused by
either the PCIe bus of the server or the used NIC, which
sends packets to the user space application in batches
dependent on the input rate.

Increasing the rate further to 100 Gbps , the
performance of the P4 UPF still remains unchanged.
This confirms the statement from Section 3, hardware
can provide very deterministic and good performance.

In order to understand the performance

Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, Ralf Steinmetz. User Plane Hardware Acceleration in Access Networks: Experiences
in Offloading Network Functions in Real 5G Deployments.

To appear in the Proceedings of the 55th Hawaii International Conference on System Sciences, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of
the copyright holder.

characteristics of the software implementations of
the UPF, we investigate the point of failing in detail.
Figure 5 depicts the latency, packet loss and relative
goodput for varying input rates for the kernel space
implementation with no SR-IOV. Relative goodput
describes the number of processed packets, i.e., the
number of packets at the N6 interface, compared to
the number of packets sent into the DUT, i.e., at the
N3 interface. For an input rate between 100Mbps
and 2.4 Gbps , the latency remains low and the packet
loss is zero. Increasing the input rate from 100Mbps
to 500 Mbps , it can be observed that the latency
decreases. This is caused neither by the UPF software
implementation nor a measurement error. Instead, it is
caused by the Linux kernel I/O performance, which is
worse if the number of requests is too low. Starting with
500 Mbps , the latency is constantly increasing until the
first point of packet loss at 2.45Gbps. At this point,
the latency increases drastically. Increasing the rate
even further, the latency and absolute goodput remain
constant at 2.29Gbps. The difference between the input
and output rate is caused by the packet decapsulation
functionality within the UPF, reducing the packet size
by 44byte. The latency is caused by the overflowing
receive buffer of the network interface card.

In the case of the DPDK UPF, the observed behavior
is similar. The point of failure is at 22.8 Gbps and the
latency increases to only 350 µs due to the higher rates.

Last, we investigate the impact of SR-IOV. As
discussed in Section 3, this technology should have
almost no impact on the performance. Surprisingly, our
measurement results have shown a slight performance
increase with SR-IOV and the kernel space UPF. In
case of no SR-IOV enabled (KS) and configured, we
observed the first packet loss at 2.45 Gbps , while
the kernel space driver operating on an SR-IOV
interface (KSv) started dropping packets at 2.5 Gbps .
One reason behind this could be that the kernel module
used for the virtual interfaces (Intel iavf-4.1.1) was
newer than the kernel module of the native port (Intel
i40e-2.7.6. The research results of Jiuxing Liu [12],
performing a similar investigation 11 years ago, have
shown slightly different results: Depending on the
packet size, they observed an almost equal or even worse
throughput in the case of SR-IOV. However, their results
are generated with older drivers and hardware.

Note that the presented results in this section were
created based on different UPF implementations of
different authors with different design goals. Therefore
an exact quantitative comparison must be regarded with
care. Nevertheless, the performance characteristics and
differences can be generalized and are valid for any
other implementation of the underlying technology.

4.3. Transferring Results

The presented measurement results show clearly that
the P4 switch provides by far the best performance.
Therefore we integrated the implementation of this UPF
into our end-to-end testbed. In order to provide a
minimal working setup, we determined the following
functionality to be implemented: (i) The UPF must be
able to associate with the SMF via a PFCP association
handshake on the N4 interface. (ii) GTP session creation
for upstream and downstream GTP sessions. (iii) As real
UEs periodically can switch between an idle and active
state, which results in changing GTP tunnel IDs, GTP
session modifications must be added.

Only rate policing and no traffic shaping was
supported due to QoS limitations of the P4 switch.
However, extending this implementation by an FPGA
with QoS functionality would build a very powerful
UPF with all required features. Our end-to-end tests
with real UEs show that a smooth operation with
open-source components is possible.

5. Conclusion

5G networks are expected to provide very high
performance regarding bandwidth and latency to the
user equipment. While these performance requirements
are demanding by themselves, the correctness validation
of developed approaches is a challenge in itself.

In this work, we describe how to setup a working
end-to-end 5G standalone test network as a basis
for research activities focusing on fulfilling these
requirements. By that, the functional correctness of
novel approaches can be shown. In addition, we
analyzed several existing technologies for accelerating
5G network functions based on related work. It turns
out that not every approach fits well for every user
plane network function, however, hardware acceleration
brings great potentials in general.

Last, we evaluated various UPF implementations
(userspace, kernel, hardware) to analyze their
performance regarding bandwidth, latency, jitter
and packet loss. In general, our results show that
the selection of the underlying technology strongly
influences the network function performance. The
outcomes clearly show that hardware acceleration in
the user plane is a key asset to fulfill the high QoS
requirements of 5G and beyond networks.

5.1. Future work

In future work, we will focus on bringing the
previously shown approaches into production. For
that, we will set up a large-scale 5G standalone

Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, Ralf Steinmetz. User Plane Hardware Acceleration in Access Networks: Experiences
in Offloading Network Functions in Real 5G Deployments.

To appear in the Proceedings of the 55th Hawaii International Conference on System Sciences, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of
the copyright holder.

campus testbed with ±40.000 m2 , multiple O-RAN
base stations and many stationary and moving UEs.
This setup will rely on open-source components and
a P4 switch UPF implementation with FPGA support
for QoS functionality. For that, we will improve the
feature support of our P4-UPF implementation and seek
an open-source publication.

Acknowledgment

This work has been funded by the Federal Ministry
of Education and Research (BMBF, Germany) within
the Software Campus Project ”5G-PCI” and by
the German Research Foundation (DFG) within the
Collaborative Research Center (CRC) 1053 MAKI.
Further, this work has been supported by Deutsche
Telekom through the Dynamic Networks 9 project. We
would like to thank all contributors of open-source
projects this work builds upon.

References

[1] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim,
D. Meyer, and O. Koufopavlou, “Software-defined
networking (sdn): Layers and architecture terminology,”
tech. rep., 2015. RFC 7426.

[2] 3GPP, “System architecture for the 5G System (5GS),”
Technical Specification (TS) 23.501, 3rd Generation
Partnership Project (3GPP), 12 2020. Version 15.12.0.

[3] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse,
and V. Stettler, “A formal analysis of 5g authentication,”
in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’18,
(New York, NY, USA), p. 1383–1396, Association for
Computing Machinery, 2018.

[4] Chi Chang, Fu-Cheng Chen, Jyh-Cheng Chen, et
al., “free5gc.” https://github.com/free5gc/free5gc, 2019.
Accessed on: 09. June 2021.

[5] Amarisoft, “Amari callbox.”
https://www.amarisoft.com/. Accessed on: 02. June
2021.

[6] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson,
R. Knopp, and C. Bonnet, “Openairinterface: A
flexible platform for 5g research,” SIGCOMM Comput.
Commun. Rev., vol. 44, p. 33–38, Oct. 2014.

[7] L. Gavrilovska, V. Rakovic, and D. Denkovski,
“From cloud ran to open ran,” Wireless Personal
Communications, pp. 1–17, 2020.

[8] Kamailio, “Kamailio - the open source sip server.”
https://github.com/herlesupreeth/kamailio, 2001.
Accessed on: 01. June 2021.

[9] L. Nobach, J. Blendin, H.-J. Kolbe, G. Schyguda,
and D. Hausheer, “Bare-metal switches and their
customization and usability in a carrier-grade
environment,” in 2017 IEEE 42nd Conference on
Local Computer Networks (LCN), pp. 649–657, 2017.

[10] J. Prados-Garzon, O. Adamuz-Hinojosa, P. Ameigeiras,
J. J. Ramos-Munoz, P. Andres-Maldonado, and J. M.
Lopez-Soler, “Handover implementation in a 5g
sdn-based mobile network architecture,” in 2016 IEEE

27th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC),
pp. 1–6, 2016.

[11] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert,
and G. Q. M. Jr., “Metron: NFV service chains at
the true speed of the underlying hardware,” in 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), (Renton, WA), pp. 171–186,
USENIX Association, Apr. 2018.

[12] J. Liu, “Evaluating standard-based self-virtualizing
devices: A performance study on 10 gbe nics with
sr-iov support,” in 2010 IEEE International Symposium
on Parallel Distributed Processing (IPDPS), pp. 1–12,
2010.

[13] M.-A. Kourtis, G. Xilouris, V. Riccobene, M. J.
McGrath, G. Petralia, H. Koumaras, G. Gardikis, and
F. Liberal, “Enhancing vnf performance by exploiting
sr-iov and dpdk packet processing acceleration,” in 2015
IEEE Conference on Network Function Virtualization
and Software Defined Network (NFV-SDN), pp. 74–78,
2015.

[14] F. Civerchia, M. Pelcat, L. Maggiani, K. Kondepu,
P. Castoldi, and L. Valcarenghi, “Is opencl driven
reconfigurable hardware suitable for virtualising 5g
infrastructure?,” IEEE Transactions on Network and
Service Management, vol. 17, no. 2, pp. 849–863, 2020.

[15] R. Kundel, T. Burkert, C. Griwodz, and B. Koldehofe,
“Chaining of hardware accelerated virtual network
functions in pcie environments,” in Proceedings of
the 20th International Middleware Conference Demos
and Posters, Middleware ’19, (New York, NY, USA),
p. 13–14, Association for Computing Machinery, 2019.

[16] R. Ricart-Sanchez, P. Malagon, A. Matencio-Escolar,
J. M. Alcaraz Calero, and Q. Wang, “Toward
hardware-accelerated qos-aware 5g network slicing
based on data plane programmability,” Transactions on
Emerging Telecommunications Technologies, vol. 31,
no. 1, p. e3726, 2020. e3726 ett.3726.

[17] P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, et al., “P4: Programming
protocol-independent packet processors,” vol. 44,
pp. 87–95, Association for Computing Machinery, 2014.

[18] R. Kundel, A. Rizk, J. Blendin, B. Koldehofe,
R. Hark, and R. Steinmetz, “P4-codel: Experiences
on programmable data plane hardware,” in IEEE
International Conference on Communications (ICC),
pp. 1–6, 2021.

[19] R. Kundel, L. Nobach, J. Blendin, W. Maas,
A. Zimber, H.-J. Kolbe, G. Schyguda, V. Gurevich,
R. Hark, B. Koldehofe, and R. Steinmetz, “OpenBNG:
Central office network functions on programmable data
plane hardware,” International Journal of Network
Management, 2021.

[20] N. Katta, O. Alipourfard, J. Rexford, and D. Walker,
“Cacheflow: Dependency-aware rule-caching for
software-defined networks,” in Proceedings of the
Symposium on SDN Research, pp. 1–12, 2016.

[21] C. Chang, “Kamailio - the open source sip server.”
https://github.com/edingroot/dpdk gtp gateway, 2016.
Accessed on: 01. June 2021.

[22] R. Kundel, F. Siegmund, J. Blendin, A. Rizk, and
B. Koldehofe, “P4STA: High performance packet
timestamping with programmable packet processors,” in
Proceedings of the IEEE/IFIP Network Operations and
Management Symposium(NOMS), IEEE, 2020.

